

Programming Guide
for Moxa Device Manager

First Edition, December 2010

www.moxa.com/product

© 2010 Moxa Inc. All rights reserved.

Programming Guide
for Moxa Device Manager

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

© 2010 Moxa Inc., All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Table of Contents

1. Introduction .. 1-1
Introduction ... 1-2
System Architecture .. 1-2

3-tier System.. 1-2
2-tier System.. 1-3

Software Module Design .. 1-3
Message Structure .. 1-4
MDM Message Definition .. 1-4
Runtime Installation .. 1-4
Runtime Operations .. 1-5
Runtime Configuration ... 1-5
MDM Development .. 1-5

2. MDM Programming .. 2-1
Initializing An MDM Program .. 2-2
Connections and Users .. 2-2
Sending Messages .. 2-3
Splitting a Formatted Message ... 2-3
Programming a GUI Tool ... 2-3

3. Programming Examples .. 3-1
Uploading a File .. 3-2
Executing an Executable .. 3-2
A Test Client Program ... 3-2
Three GUI MDM Client Programs ... 3-2

A. MDM Protocol .. A-1
Messages Supported by MDM Core .. A-1
Messages Supported by MDM File Manager Library .. A-5
Messages Supported by MDM System Information Library .. A-6
Messages Supported by MDM Network Management Library ... A-7
Messages Supported by MDM Time Management Library .. A-8
Messages Supported by MDM Process Management Library .. A-8
Messages Supported by MDM Auto-launch Library ... A-8
Messages Supported by MDM Shell Execution Library ... A-9

B. MDM API Functions ... B-1

1
1. Introduction

The following topics are covered in this chapter:

 Introduction

 System Architecture

 3-tier System

 2-tier System

 Software Module Design

 Message Structure

 MDM Message Definition

 Runtime Installation

 Runtime Operations

 Runtime Configuration

 MDM Development

Programming Guide for Moxa Device Manager Introduction

 1-2

Introduction
Moxa Device Manager (MDM for short) is an easy-to-use remote management tool for managing Moxa’s
ready-to-run embedded computers on the Internet. Moxa’s embedded computers make excellent front-end
computers at remote sites for on-site data collection and industrial control applications. MDM is designed to
make it easy for system administrators to manage their remote embedded computers. One of the key benefits
of MDM is that management tasks, such as configuring the network, managing and/or transmitting text and
binary files, and monitoring and controlling processes, can be handled easily using a Windows-based user
interface. In addition, MDM can be used to manage different embedded computer models and embedded
computers that use different operating systems, all from one centrally located computer. As long as the
individual embedded computers all have MDM Agent installed, they can be recognized and managed by the
unified MDM Client onyour PC. MDM’s features give system integrators an efficient tool for handling all remote
devices from one computer.

This version of MDM further provides a framework to help developers integrate their own programs with the
MDM API to manage embedded computers with dynamically loaded functions.

System Architecture
An MDM system is constructed by a set of MDM programs. An MDM Gateway acts as a TCP server as well as a
UDP client. The MDM Client and a number of MDM Agents are TCP clients and UDP servers to the MDM Gateway.
The MDM client runs at the central site and the MDM Agents run at the distributed sites. There are two different
network deployment options to choose from, according to your network circumstances.

3-tier System
If your distributed or remote site has an internet-accessible Windows PC, you can use that PC to run MDM
Gateway. In addition, install MDM Agent onto each Moxa computer which is in the same LAN as that PC. This
deployment architecture, called a 3-tier system, is illustrated in the following figure. The advantage of this
architecture is that none of the embedded computers in the site need internet accessibility. The MDM Client in
the central site Windows PC communicates with the MDM Gateway.

Within the LAN at the remote site, MDM Gateway periodically sends a UDP broadcast message of its location to
auto-discover MDM Agents in the embedded computers. The MDM Agents receive the UDP broadcast message
and then make a TCP connection to the MDM Gateway for further message transmission.

Programming Guide for Moxa Device Manager Introduction

 1-3

2-tier System
An alternative architecture is a 2-tier system, illustrated in the following figure. In this architecture, each of
computers at the remote site must be connected to the internet. Each computer runs the MDM Agent program,
and the MDM Gateway GUI/Client at the central site Windows PC communicates with them through the
internet.

All MDM Agents need to know the location of the MDM Gateway. That is to say, at each remote computer, you
need to specify the IP address and the TCP listening port of the MDM Gateway in the configuration file.

Software Module Design
The following figure shows the software module design of the MDM programs.

For any MDM program, a dispatcher is implemented within an infinite loop. It manages/handles all established
TCP/UDP connections and those data packets received from these connections. The dispatcher digests one
message at a time. By checking a pool of managed callback functions, it calls the associated function to handle
the message.

MDM also includes an application programming interface (API) for programmers to format messages to be
transmitted over TCP/UDP connections.

Programming Guide for Moxa Device Manager Introduction

 1-4

Message Structure
MDM programs are driven by messages over UDP/TCP connections. A message is used when one MDM
computer needs to communicate with another. An MDM message contains at least two fields: the message tag
and data field. The message tag field indentifies the message and is a positive number. The data field contains
data for the associated message ID.

MDM Message Definition
The MDM design has defined message protocols to support all features. For details, please refer to Appendix A:
MDM Protocol. When programming for MDM, you need to use MDM protocols and the symbolic constants
defined in the header file mdm_message.h.

Runtime Installation
The MDM program on each embedded computer can be either an MDM Agent or MDM Gateway. For your
specific product model, download the compressed MDM program from Moxa web site and upload it to the
embedded computer. Then select a directory such /home in Linux and C:\ in Windows XPe and uncompress the
compressed MDM program into the directory.

In Linux, the MDM working directory mdm includes the following files:

mdm working directory
dll DLL directory
libfmngr.so File Manager shared library
liblaunch.so Auto-launch shared library
libnet.so Network Management shared library
libproc.so Process Management shared library
libshell.so Shell Execution shared library
libsystem.so System Information shared library
libtime.so RTC and System Time shared library
libmdm.so MDM API shared library
mdm-main MDM main program using MDM API shared library
mdm_start.sh shell script to start the MDM program
mdm_stop.sh shell script to stop the MDM program

In Windows, the MDM working folder mdm includes the following files:

mdm working directory
dll DLL directory
fmngr.dll File Manager DLL
launch.dll Auto-launch DLL
net.dll Network Management DLL
proc.dll Process Management DLL
shell.dll Shell Execution DLL
system.dll System Information DLL
time.dll RTC and System Time DLL
mdm.dll MDM API DLL
mdm-main.exe MDM main program using MDM API DLL

Under the MDM working directory mdm, there are an MDM API Linux shared library (libmdm.so) or Windows
dynamic-link library (mdm.dll), an MDM main program for MDM Agent or MDM Gateway, and a subdirectory dll
where seven Moxa featured dynamic-link libraries or shared libraries are provided. The dynamic-link libraries
or shared libraries under dll are loaded into the memory space of the MDM Gateway or Agent when it is started.

Programming Guide for Moxa Device Manager Introduction

 1-5

Follow these steps to add auto-launch support for MDM Agent in Windows XPe,

1. Execute Autolaunch.exe to install the AutoLaunch service.

2. Start the AutoLaunch service immediately (Start menu  Control Panel  Administrative Tools 
Services  Auto Launch), or start AutoLaunch the next time Windows boots up.

Runtime Operations
To start an MDM Agent, run the MDM main program in Windows and mdm_start.sh in Linux with or without the
-a argument. To stop it, kill its process in Windows and run mdm_stop.sh in Linux. The Windows MDM main
program is a console program and it may be stopped gracefully by pressing the Ctrl and Break keys at the same
time.

To start an MDM Gateway, run the MDM main program in Windows and mdm_start.sh in Linux with the -g
argument. To stop it, kill its process in Windows and run mdm_stop.sh in Linux.

To start an MDM Gateway and MDM Agent simultaneously, run the MDM main program in Windows and
mdm_start.sh in Linux with -g and -a arguments. To stop it, kill its process in Windows and run mdm_stop.sh
in Linux.

Runtime Configuration
By default, the MDM configuration files is not in the release package and MDM operates using default values.
The MDM configuration file must be named config. If the configuration file config is needed, it should be in the
MDM working directory mdm. This file defines system parameters used by the MDM programs. These
parameters are presented in a “key = value” format. Examples are as follows.

For MDM Gateway, default as 16888
tcp_server_port = 1234
For MDM Gateway, default as 16889
udp_server_port = 1235
For MDM Agent or GUI/client, specifically assign the location of the gateway
gateway_hosts = tcp:201.63.45.2:1234

The program must restart for any changes to take effect. For the system architecture where MDM Gateway and
MDM Agent are cross-Internet, the gateway_hosts parameter must be specified in the configuration file in
order to let MDM Agent know the location of the MDM Gateway.

MDM Development
MDM development files are used to develop MDM Client programs.

In linux, the MDM API directory mdm_api includes the following files:

mdm_api MDM API directory
inc header file directory
mdm_api.h MDM API header file
mdm_message.h MDM message definition file
lib library directory
libmdm.so MDM API shared library
mdm-test MDM Client demo program source directory

Programming Guide for Moxa Device Manager Introduction

 1-6

In windows, the MDM API folder mdm_api includes the following files:

mdm_api MDM API folder
inc header file folder
mdm_api.h MDM API header file
mdm_message.h MDM message definition file
lib library folder
mdm.dll MDM API DLL
mdm.lib MDM API LIB
mdm-test MDM Client demo program source folder

You can refer to files in the mdm-test directory to help write your own MDM Client programs.

2
2. MDM Programming

This chapter describes the procedure of initializing an MDM program and the use of APIs and data structures in
the C language. This chapter will also illustrate how to program callback functions and how to handle messages.

The following topics are covered in this chapter:

 Initializing An MDM Program

 Connections and Users

 Sending Messages

 Splitting a Formatted Message

 Programming a GUI Tool

Programming Guide for Moxa Device Manager MDM Programming

 2-2

Initializing An MDM Program
To initialize an MDM program, call function mdm_start with specifying a program type for MDM Client, MDM
Gateway, or MDM Agent.

int mdm_start(unsigned int type, unsigned int thread);
#define PROGRAM_TYPE_DEVICE 1 /* MDM Agent */
#define PROGRAM_TYPE_GATEWAY (1<<1) /* MDM Gateway */
#define PROGRAM_TYPE_CLIENT (1<<2) /* MDM Client */

For example, use mdm_start to call one of the following:

mdm_start(PROGRAM_TYPE_DEVICE, 0);
mdm_start(PROGRAM_TYPE_GATEWAY, 0);
mdm_start(PROGRAM_TYPE_CLIENT, 1);

Note that when using this function, the MDM client and MDM gateway can be started together, as in the
example below:

mdm_start(PROGRAM_TYPE_GATEWAY | PROGRAM_TYPE_CLIENT, 1);

Use argument thread to initialize MDM in thread mode. That means you can add your code and have one thread
operating MDM.

To check the life of the MDM thread, please use the following API.

int mdm_alive(void);

To stop the MDM thread, call the following API.

void mdm_stop(void);

Connections and Users
Each UDP/TCP connection in MDM is defined as follows.

typedef struct _MDMCONN MDMCONN;
/* A connection could be a device, a gateway, or a client. Messages are transmitted over it. */
struct _MDMCONN
{
unsigned int type; /* type of connection to the system */
 void *hndl; /* pointer to the low level connection */
MDMUSER *user; /* what user is */
char *peer; /* peer is talking */
void *data; /* private data, careful use */
};

Do not change the values of these elements: type, hndl and user. You can utilize the element data to carry
meaningful private data.

Additionally, the following struct type is used to identify a connection. Element nick is a string with a format of
ip:port, for example, 201.34.56.12:3476. It is the IP address followed by the local port of the connection.

/* An MDM program maintains a list of users. A user could be a device, a gateway, or a client. */
typedef struct _MDMUSER
{

char *nick; /* a system-wide yet unique name */
char *pass; /* not used */
MDMCONN *con; /* connection bound to the user */
unsigned int flags; /* reserved for future use */

} MDMUSER;

Programming Guide for Moxa Device Manager MDM Programming

 2-3

Do not change the values of the elements: nick, pass and con. You can utilize the element flags to carry
meaningful private data.

Sending Messages
Inside a callback function, you can utilize either of the following APIs to send a message to a connection.

void send_cmd (MDMCONN *con, unsigned int tag, const char *fmt, ...);
void send_peer(MDMCONN *con, char *peer, unsigned int tag, const char *fmt, ...);
void send_cmd_data (MDMCONN *con, unsigned int tag, const char *data, unsigned int len);
void send_peer_data(MDMCONN *con, char *peer, unsigned int tag, const char *data, unsigned int len);

An MDM program uses function send_cmd to send a formatted message over a one-hop connection to another
MDM program, e.g., an MDM Client to an MDM Gateway and vice versa or an MDM Agent to an MDM Gateway
and vice versa. The send_cmd function is formatted just like a sprintf function. When there is more than one
data field in the message, remember to use a space as a delimiter. If there is a space or two in a data field, use
a pair of double quotes on it.

When you transmit a formatted message, unless it is a file transfer message between an MDM Agent and an
MDM Client, use send_peer to send it over two-hop connections. The message is first sent to the MDM Gateway
which then forwards it to a named peer.

Function send_cmd_data is the non-formatted version of send_cmd while send_peer_data is the
non-formatted version of send_peer.

Splitting a Formatted Message
When a formatted message arrives, your user-defined function can use the following API function to split the
message into string fields:

int split_line (char **av, int max, char *pkt);

Or use the following API function to parse a string field at a time:

char* next_arg (char **pkt);

Programming a GUI Tool
When you program an MDM Client, you can also build a GUI tool. Leave those messages to the tool. That means
no callback functions are defined in the client. Messages for these functions will not be handled by the client.
Instead, you define a function of the following type to handle them in with GUI components. An example of such
a function would be:

typedef void (*mdm_message_t) (MDMCONN *con, int tag, int argc, char **argv);

In this function, the first argument contains information of connected MDM Gateway. The connected MDM
Gateway session ID can be obtained from con->user->nick. The second argument denotes the message ID

of the received message. The third argument denotes the number of fields in the received message for the field
data in the fourth argument.

/* This function is provided by the GUI and is called when there is
message coming and is not intercepted by the client.
*/
static void
mngr_message (MDMCONN *con, int tag, int argc, char **argv)
{

char *nick;
int i;

Programming Guide for Moxa Device Manager MDM Programming

 2-4

printf("mngr_message : [%d]", tag);
for (i=0; i < argc; i++)
printf(" %s", argv[i]);
printf("\n");

nick = argv[0];
switch(tag)
{

/* periodically gets the information of a device: */
case MSG_DEVICE_MEMORY_INFO: /* 3: <nick> <freeRAM> <totalRAM> */
break;

…
}

…
}
To send messages to the MDM Gateway or MDM Agent outside this function, the MDM Gateway session ID and
the associated MDMCONN argument value must be saved when message ID 16 is received on MDM Clients
connected to the MDM Gateway. The session to MDM Gateway is useless when message ID 21 is received on
MDM Clients disconnected from the MDM Gateway. Furthermore, in order to send messages to MDM Agent
outside this function, the MDM Agent session ID must also be saved for the connected MDM Gateway when
message ID 17 is received. The session ID of MDM Agent is useless when message ID 18 is received.

To make the function effective, call the following API mdm_set_mngr_function to add it before calling API
mdm_start in the main routine.

void mdm_set_mngr_function(mdm_message_t msg);
…
mdm_set_mngr_function(mngr_message);
/* start MDM */
if (mdm_start(p_type, 1) != 0)
{

printf("Failed to start MDM\n");
return -2;

}
…

3
3. Programming Examples

This chapter introduces several examples of programming for an MDM Client.

The following topics are covered in this chapter:

 Uploading a File

 Executing an Executable

 A Test Client Program

 Three GUI MDM Client Programs

Programming Guide for Moxa Device Manager Programming Examples

 3-2

Uploading a File
By utilizing send_cmd, MDM allows a client program to upload a local file to an agent. The messages related to
file transfer are defined in Appendix A. In your client program, call the following—

send_cmd(con, MSG_MXFTP_3TIER_CLI2DEV, "%s \"%s\" \"%s\" \"%s\"",
devNick, devDir, fName, cliDir);

—where devNick is the session ID of MDM Agent, fName is the name of the file being uploaded, cliDir is its
source directory, and devDir is its destination directory in the embedded computer.

After initiating a file upload session, the client program continues receiving a progress status, i.e.,
MSG_MXFTP_UPLOAD_STATUS messages. When the session completes, the client program receives a
MSG_MXFTP_UPLOAD_COMPLETE message.

Executing an Executable
The MDM allows a client program to remotely execute an executable file in an embedded computer. Use the
following code—

send_peer(con, MSG_SYSTEM_EXECUTE, "%s \"%s\" \"%s\"", nick, path, args);

—where nick is the session ID of MDM Agent, path is the path of an executable file, and args is its arguments.

A Test Client Program
You can find a Windows Visual Studio project or Linux Makefile and the source code of a console program in the
directory mdm-test. The mdm-test MDM Client sends MDM message requests from a file in a specific format
and receives replies. It can be used to test all MDM messages.

Three GUI MDM Client Programs
You can find three Windows Visual Studio projects and their source code in the directories MDM-System,
MDM-Proc and MDM-Shell. The MDM-System program displays the system information of the selected device.
The MDM-Proc program displays a list of running programs on the selected device and can stop a selected
running program. The MDM-Shell program can run a non-interactive program in the selected device and get its
output to display.

A
A. MDM Protocol

The MDM Protocol defines message specifications for each MDM message. There are two types of MDM
protocols. The first are messages supported by MDM Core and the others are ones supported by seven prebuilt
MDM Agent libraries. Both are described in the following sections. Each function of message specifications are
described together in items of message type, message ID, message data and the description of arguments in
message data. The message type of each message is request or reply. If the message ID for a message is in
bold font, then it means multiple requests or replies could be sent or received. Message examples of each reply
are also given. For each message request with the first data argument devNick except file transfer messages,
use the function send_peer or send_peer_data to send requests. For other requests, use the function
send_cmd or send_cmd_data to send them.

Messages Supported by MDM Core
MDM Core provides six categories of messages.

1. Unsolicited Messages
When MDM Client is connected to MDM Gateway, there are five types of unsolicited messages.

A. MDM Client accepted by MDM Gateway notification. This message is the first message received by the
MDM Client and sent from the MDM Gateway after connection to the MDM Gateway is established.

Type ID Data Description
Reply 16 gwLocation cliNick gwLocation: connected MDM Gateway location

in IP address and TCP port
cliNick: session ID of MDM Client accepted by
connected MDM Gateway

For example: 16 192.168.30.44:16888 192.168.30.44:2312

B. MDM Client disconnected from MDM Gateway notification. There is no data in the message.

Type ID Data Description
Reply 21

C. MDM Agent session ID notification. After this message is received the MDM Client can manage the

corresponding MDM Agent.

Type ID Data Description
Reply 17 DevNick devNick: session ID of MDM Agent managed by

connected MDM Gateway

For example: 17 192.168.30.81:1029

D. MDM Agent disconnected notification.

Type ID Data Description
Reply 18 devNick devNick: session ID of MDM Agent which is

disconnected from connected MDM Gateway

For example: 18 192.168.30.81:1029

Programming Guide for Moxa Device Manager MDM Protocol

 A-2

E. Error replies sent by MDM Agent

Type ID Data Description
Reply 1 devNick errMsg errMsg: error message

For example: 1 192.168.30.81:1029 “4 arguments not enough.”

F. MDM Agent memory information notification.

Type ID Data Description
Reply 3 devNick total free total: total size of memory

free: free space of memory

For example: 3 192.168.30.81:1029 62452 47968

2. Get DLL Name of MDM Agent

Type ID Data Description
Request 33 devNick [name] name: DLL name

layer: device directory name under dll directory Reply 34 devNick name [layer]

Reply 35 devNick [name]

Note: If an optional name argument is given in the request, then it will check if the corresponding DLL exists.
If it exists, only one message ID 34 with the given name is replied; otherwise message ID 34 is not replied. For
example:

34 192.168.30.81:1029 net
34 192.168.30.81:1029 time
34 192.168.30.81:1029 launch
34 192.168.30.81:1029 fmngr
34 192.168.30.81:1029 shell
34 192.168.30.81:1029 proc
34 192.168.30.81:1029 system
35 192.168.30.81:1029

3. System Execution

Type ID Data Description
Request 4 devNick prog args prog: executable program name or path

args: program arguments

Reply 5 devNick

Note: If no program arguments, use “” to denote no argument. If there are multiple arguments with spaces
between them, also use double quote to surround them.

4. Two-tier File Transfer

Two-tier file transfer is used when MDM Client and MDM Gateway are on the same computer. The files on this
computer can directly upload to MDM Agent or the files can directly download from MDM Agent to this
computer.

A. File Download

Type ID Data Description
Request 61 devNick devDir fName cliDir [dstName] devDir: a device directory

fName: file name
cliDir: client directory
dstName: destination file name
reportKey: internal use
state: internal use
foffs: file offset
fsize: file size
cliPath: client file path
devPath: device file path

Reply 53 devNick reportKey state foffs fsize
cliPath devPath

Reply 51 devNick reportKey cliPath devPath

Programming Guide for Moxa Device Manager MDM Protocol

 A-3

Note: The message ID 53 is used for file download status report. The message ID 51 denotes file download
complete. For example:

53 192.168.30.82:1065 1 4 29 29 c:\temp\test.txt C:\test\test.txt
51 192.168.30.82:1065 1 c:\temp\test.txt C:\test\test.txt

B. File Upload

Type ID Data Description
Request 62 devNick devDir fName cliDir [dstName] devDir: a device directory

fName: file name
cliDir: client directory
dstName: destination file name
reportKey: internal use
state: internal use
foffs: file offset
fsize: file size
cliPath: client file path
devPath: device file path

Reply 54 devNick reportKey state foffs fsize
cliPath devPath

Reply 52 devNick reportKey cliPath devPath

Note: The message ID 54 is used for file upload status report. The message ID 52 denotes file upload complete.
For example:

54 192.168.30.82:1065 1 5 0 29 c:\temp\test.txt C:\test\test.txt
54 192.168.30.82:1065 1 5 29 29 c:\temp\test.txt C:\test\test.txt
52 192.168.30.82:1065 1 c:\temp\tes.txt C:\test\test.txt

C. Notification of file transfer error

Type ID Data Description
Reply 50 devNick errMsg errMsg: error message while file transfer

For example:

50 192.168.30.82:1065 “fail to open file for read: C:\test\nofile.txt”

5. Three-tier File Transfer

A. File Download

Type ID Data Description
Request 73 devNick devDir fName cliDir [dstName] devDir: a device directory

fName: file name
cliDir: client directory
dstName: destination file name
reportKey: internal use
state: internal use
foffs: file offset
fsize: file size
cliPath: client file path
devPath: device file path

Reply 53 devNick reportKey state foffs fsize
cliPath devPath

Reply 51 devNick reportKey cliPath devPath

Note: The message ID 53 is used for file download status report. The message ID 51 denotes file download
complete. For example:

53 192.168.30.82:1065 1 5 0 29 c:\temp\test.txt C:\test\test.txt
53 192.168.30.82:1065 1 5 29 29 c:\temp\test.txt C:\test\test.txt
51 192.168.30.82:1065 1 c:\temp\test.txt C:\test\test.txt

Programming Guide for Moxa Device Manager MDM Protocol

 A-4

B. File Upload

Type ID Data Description
Request 74 devNick devDir fName cliDir [dstName] devDir: a device directory

fName: file name
cliDir: client directory
dstName: destination file name
reportKey: internal use
state: internal use
foffs: file offset
fsize: file size
cliPath: client file path
devPath: device file path

Reply 54 devNick reportKey state foffs fsize
devPath cliPath

Reply 52 devNick reportKey devPath cliPath

Note: The message ID 54 is used for file upload status report. The message ID 52 denotes file upload complete.
For example:

54 192.168.30.82:1065 1 5 0 29 C:\test\test.txt c:\temp\test.txt
54 192.168.30.82:1065 1 5 29 29 C:\test\test.txt c:\temp\test.txt
52 192.168.30.82:1065 1 C:\test\test.txt c:\temp\test.txt

C. Notification of file transfer error

Type ID Data Description
Reply 50 devNick errMsg errMsg: error message while file transfer

For example: 50 192.168.30.82:1065 “fail to open file for read: c:\temp\nofile”

6. Configuration File

A. Reload configuration file

Type ID Data Description
Request 91 devNick

Reply 92 devNick

B. Set a configuration entry

Type ID Data Description
Request 93 devNick key value key: configuration entry name

value: configuration entry value Reply 94 devNick key

For example: 94 192.168.30.82:1065 tcp_server_port

C. Save all configurations into configuration file

Type ID Data Description
Request 95 devNick

Reply 96 devNick

D. Get all configurations or a configuration entry

Type ID Data Description
Request 97 devNick [key] key: configuration entry name

value: configuration entry value Reply 98 devNick key = value

Reply 99 devNick [key]

Note: If optional key argument is given in the request, then it will check if the corresponding configuration
entry exists. If it exists, only one message ID 98 with the given key is replied; otherwise message ID 98 is not
replied. For example: 98 192.168.30.81:1029 tcp_server_port = 16888

E. Notification of configuration error

Type ID Data Description
Reply 90 devNick errMsg errMsg: error message

For example: 90 192.168.30.82:1065 “93 error setting variable wrong_key”

Programming Guide for Moxa Device Manager MDM Protocol

 A-5

Messages Supported by MDM File Manager
Library

1. Browse a device directory

Type ID Data Description
Request 140 devNick devDir devDir: a device directory

isDir: 1 for directory and 0 for not
fSize: file size; 0 for directory
fName: file or directory name
fTime: file modification time
fMode: Linux file mode; 0 for Windows

Reply 141 devNick isDir fSize fName fTime fMode

Reply 142 devNick devDir

For example:

141 192.168.30.82:1065 0 57344 AutoLaunch.exe 2009/01/15 02:10:20 0
141 192.168.30.82:1065 1 0 dll 2010/06/30 12:50:39 0
141 192.168.30.82:1065 0 73728 mdm-main.exe 2010/06/30 08:36:37 0
141 192.168.30.82:1065 0 143360 mdm.dll 2010/06/30 06:43:34 0
141 192.168.30.82:1065 0 44544 ShutDownC.exe 2005/03/20 10:21:50 0
142 192.168.30.82:1065 C:\mdm

2. Check if a device file or directory exists

Type ID Data Description
Request 143 devNick devPath devPath: a device path

flag: 1 for existing and 0 for not Reply 144 devNick devPath flag

For example:

144 192.168.30.82:1065 C:\mdm 1
144 192.168.30.82:1065 C:\mdm\mdm-main.exe 1
144 192.168.30.82:1065 C:\fakeFolder 0

3. Rename a device file or directory

Type ID Data Description
Request 145 devNick srcPath dstPath srcPath: source device path

dstPath: destination device path Reply 146 devNick srcPath dstPath

For example:

146 192.168.30.82:1065 C:\test\command.txt C:\test\cmd.txt
146 192.168.30.82:1065 C:\test C:\tst

4. Create a device directory

Type ID Data Description
Request 147 devNick devDir devDir: a device directory

Reply 148 devNick devDir

For example: 148 192.168.30.82:1065 C:\test

5. Delete a device directory

Type ID Data Description
Request 149 devNick devDir devDir: a device directory

Reply 150 devNick devDir

Note: All files and directories under the target device directory are also deleted.

For example: 150 192.168.30.82:1065 C:\tst

Programming Guide for Moxa Device Manager MDM Protocol

 A-6

6. Delete a device file

Type ID Data Description
Request 151 devNick devPath devPath: a device path

Reply 152 devNick devPath

For example: 152 192.168.30.82:1065 C:\test\cmd.txt

7. Delete all device files in a directory

Type ID Data Description
Request 153 devNick devDir devDir: a device directory

Reply 154 devNick devDir

For example: 154 192.168.30.82:1065 C:\tst

8. Change file mode of a Linux device file or directory

Type ID Data Description
Request 155 devNick devPath fMode devPath: a device path

fMode: Linux file mode in 3 digits Reply 156 devNick devPath fMode

For example: 156 192.168.30.81:1029 /tmp/test.txt 664

Messages Supported by MDM System
Information Library

1. Reboot device

Type ID Data Description
Request 170 devNick

Reply 171 devNick

2. Get device system information

Type ID Data Description
Request 172 devNick

Reply 173 devNick agentVer model frmVer osVer
CPUtype hostname

agentVer: MDM Agent version
model: product model name
frmVer: firmware version
osVer: OS version
CPUtype: CPU type
hostname: host name

For example:

173 192.168.30.81:1029 “1.0.0 (Build 10062817)” IA3341-LX 1.0 “Standard Linux 2.6.9-uc0” MOXA-ART
Moxa

173 192.168.30.82:1065 “1.0.0 Build 10063014” V2100-XPE 1.0 “Windows XPe 5.1” “Intel(R) Atom(TM)”
OEM-NP05862JW93

3. Get device storage information

Type ID Data Description

Request 174 devNick

Reply 175 devNick total free total: total size of device storage
free: free space of device storage

For example: 175 192.168.30.81:1029 3960 6144

Programming Guide for Moxa Device Manager MDM Protocol

 A-7

Messages Supported by MDM Network
Management Library

1. Obtain all device interface information

Type ID Data Description
Request 180 devNick

Reply 181 devNick name flag [IP] [mask] [gw]
[MAC]

name: interface name
flag: 1 for fixed IP , 0 for DHCP
IP: IP address
mask: network mask
gw: default gateway
MAC: MAC address

Reply 182 devNick

Note: When an interface for DHCP is obtained, the last four arguments are not replied. For example:

181 192.168.30.81:1029 eth0 1 192.168.30.81 255.255.255.0 192.168.30.254 00:90:e8:e7:c3:d1
181 192.168.30.82:1065 “Local Area Connection” 1 192.168.30.82 255.255.255.0 192.168.30.254
00:90:E8:00:D6:88

2. Set device interface information

Type ID Data Description
Request 183 devNick name flag [IP] [mask] [gw] name: interface name

flag: 1 for fixed IP , 0 for DHCP
IP: IP address
mask: network mask
gw: default gateway

Reply 184 devNick name

Note: When an interface for DHCP is set, the last four arguments are not sent. For example: 184
192.168.30.82:1065 “Local Area Connection 2”

3. Get device DNS list of an interface

Type ID Data Description
Request 185 devNick name name: interface name

DNSlist: DNS server list Reply 186 devNick name [DNSlist]

Note: If there are multiple DNS servers for the DNSlist, then each DNS server is treated as an argument and
a double quote is not needed. For example:

186 192.168.30.81:1029 eth0 192.168.1.97 192.168.1.91
186 192.168.30.82:1065 “Local Area Connection” 192.168.1.91 192.168.1.97

4. Set device DNS list for an interface

Type ID Data Description
Request 187 devNick name [DNSlist] name: interface name

DNSlist: DNS server list Reply 188 devNick name

Note: To clear DNS setting, don’t give values to NDSlist to denote no DNS server list. For example: 188
192.168.30.82:1065 “Local Area Connection”

Programming Guide for Moxa Device Manager MDM Protocol

 A-8

Messages Supported by MDM Time Management
Library

1. Get device time

Type ID Data Description
Request 190 devNick YYYY-MM-DD: date

hh:mm:ss: time Reply 191 devNick YYYY-MM-DD hh:mm:ss

For example: 191 192.168.30.81:1029 2010-06-28 18:52:39

2. Set device time

Type ID Data Description
Request 192 devNick YYYY-MM-DD hh:mm:ss YYYY-MM-DD: date

hh:mm:ss: time Reply 193 devNick

Messages Supported by MDM Process
Management Library

1. Get device process information

Type ID Data Description
Request 200 devNick pid: process ID

progCmd: program command Reply 201 devNick pid progCmd

Reply 202 devNick

For example:

201 192.168.30.82:1065 3052 rdpclip.exe
201 192.168.30.82:1065 3192 LogonUI.exe
201 192.168.30.82:1065 3428 NotifyWindow.exe
201 192.168.30.82:1065 3460 RTHDCPL.EXE
201 192.168.30.82:1065 116 mdm-main.exe
201 192.168.30.82:1065 2316 scrnsave.scr

2. Stop a device process

Type ID Data Description
Request 203 devNick pid [progCmd] pid: process ID

progCmd: optional program command Reply 204 devNick

Messages Supported by MDM Auto-launch
Library

1. Get device auto-launch information

Type ID Data Description
Request 210 devNick prog: executable program name or path

args: program arguments Reply 211 devNick prog args

Reply 212 devNick

Note: If no program arguments, use “” to denote no argument. If there are multiple arguments with spaces
between them, also use double quote to surround them. For example: 211 192.168.30.82:1065
C:\mdm\mdm-main.exe

2. Set device auto-launch information

Programming Guide for Moxa Device Manager MDM Protocol

 A-9

Type ID Data Description
Request 213 devNick prog args prog: executable program name or path

args: program arguments Request 214 devNick

Reply 215 devNick

Note: If no program arguments, use “” to denote no argument. If there are multiple arguments with spaces
between them, also use double quote to surround them.

Messages Supported by MDM Shell Execution
Library

1. Execute a device program to get its output and execution result

Type ID Data Description
Request 280 devNick devPath [args] devPath: executable program path

args: optional program arguments
id: ID from 0 to 15
data: program output data
returnCode: 0 for success and others for failure

Reply 281 devNick id

Reply 286 devNick id data

Reply 287 devNick id returnCode

Note: The double quote cannot be used in message ID 286. For example:

281 192.168.30.82:1065 0
287 192.168.30.82:1065 0 0

2. Stop execution of a device program

Type ID Data Description
Request 282 devNick id id: ID from 0 to 15

Reply 283 devNick id

For example: 283 192.168.30.82:1065 0

B
B. MDM API Functions

The following lists all MDM API functions for reference purposes.

Start up an MDM Core in a program or thread with specified type(s)

int mdm_start(unsigned int type, unsigned int thread);
Input:
<type> the type of program to start up
 <thread> 1 for thread and 0 for program
Output: none

Return:
 0 on success and negative value for failure.

Check if the MDM Core is alive

int mdm_alive(void);
Input: none
Output: none

Return:
 1 for alive and 0 for dead

Stop the MDM Core

void mdm_stop(void);
Input: none
Output: none

Return: none

Set an user-defined function to handle the messages delivered from gateways

void mdm_set_mngr_function(mdm_message_t msg);
Input:
 <msg> an user-defined function for MDM UI/Client
Output: none

Return: none

Split a message packet in char string format with space delimiters into an array of string elements

int split_line(char **av, int count, char *pkt);
Input:
 <pkt> the message packet
 <count> the size of the array av
Output:
 <av> point to the array of the string elements

Return:
 the number of string elements

Programming Guide for Moxa Device Manager MDM API Functions

 B-2

Parse a message packet in char string format with space delimiters

char* next_arg(char **pkt);
Input:
 <pkt> point to the address of the message packet
Output:
 <pkt> move the address to the next element

Return:
 point to the first element

Send a formatted message over a one-hop connection.

void send_cmd(MDMCONN *con, unsigned int tag, const char *fmt, ...);
Input:
 <con> the connection
 <tag> message id
 <fmt> format the content of the message
Output: none

Return: none

Send a formatted message over two-hop connections.

void send_peer(MDMCONN *con, char *nick, unsigned int tag, const char *fmt, ...);
Input:
 <con> the connection
 <nick> the name/id of the device
 <tag> message id
 <fmt> format the content of the message
Output: none

Return: none

Send a non-formatted message over a one-hop connection

void send_cmd_data(MDMCONN *con, unsigned int tag, const char *pkt, unsigned int len);
Input:
 <con> the connection
 <tag> message id
 <pkt> the message data
 <len> the length of the message
Output: none

Return: none

Send a non-formatted message over two-hop connections.

void send_peer_data(MDMCONN *con, char *nick, unsigned int tag, const char *pkt, unsigned int
len);
Input:
 <con> the connection
 <nick> the name/id of the device
 <tag> message id
 <pkt> the message data
 <len> the length of the message
Output: none

Return: none

	1. Introduction
	Introduction
	System Architecture
	3-tier System
	2-tier System

	Software Module Design
	Message Structure
	MDM Message Definition
	Runtime Installation
	Runtime Operations
	Runtime Configuration
	MDM Development

	2. MDM Programming
	Initializing An MDM Program
	Connections and Users
	Sending Messages
	Splitting a Formatted Message
	Programming a GUI Tool

	3. Programming Examples
	Uploading a File
	Executing an Executable
	A Test Client Program
	Three GUI MDM Client Programs

	A. MDM Protocol
	Messages Supported by MDM Core
	Messages Supported by MDM File Manager Library
	Messages Supported by MDM System Information Library
	Messages Supported by MDM Network Management Library
	Messages Supported by MDM Time Management Library
	Messages Supported by MDM Process Management Library
	Messages Supported by MDM Auto-launch Library
	Messages Supported by MDM Shell Execution Library

	B. MDM API Functions

