

Copyright © 2024 Moxa Inc. Released on Nov 22, 2024

About Moxa
Moxa is a leading provider of edge connectivity, industrial computing, and network infrastructure
solutions for enabling connectivity for the Industrial Internet of Things. With 35 years of industry
experience, Moxa has connected more than 82 million devices worldwide and has a distribution and
service network that reaches customers in more than 80 countries. Moxa delivers lasting business
value by empowering industry with reliable networks and sincere service for industrial
communications infrastructures. Information about Moxa’s solutions is available at www.moxa.com.

How to program MicroPython file for proprietary
serial device

Moxa Technical Support Team

support@moxa.com

Contents
1 Introduction .. 2
2 Writing MicroPython Scripts .. 3

2.1 Programming tool ... 3
2.2 Modules .. 3

2.2.1 mx_sio ... 3
2.2.2 Denylist ... 4

2.3 Main function .. 5
2.4 Example: A simple example of reading Modbus device registers 6
2.5 Example: A simple example of writing Modbus device registers with

parameters ... 8
2.6 Example: A simple example of reading/writing Modbus device registers with

parameters ... 11
2.7 Example: Another example of reading a proprietary serial device 11

3 Verification .. 13

http://www.moxa.com/
mailto:support@moxa.com

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 2 of 16

1 Introduction
The MGate 5216 Series EtherCAT industrial Ethernet gateways convert data between
Modbus RTU/ASCII, proprietary serial, and EtherCAT protocols. To integrate existing serial
devices into an EtherCAT network, use the MGate 5216 as a serial master to collect data
and exchange data with the EtherCAT host.

This document provides a tutorial on how to write a MicroPython file to communicate with
serial devices, including preparing the request package with fixed data or data from
EtherCAT host, sending and receiving serial bits and bytes through the serial port,
handling the response, and transmitting the data to the EtherCAT host.

For configuring proprietary serial operation modes and settings, refer to the user manual.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 3 of 16

2 Writing MicroPython Scripts

2.1 Programming tool
To write MicroPython scripts, which will be executed in the MGate 5216, you can use any
text editor (e.g. Notepad++) or other programming tool supporting MicroPython syntax to
check the validation of the file.

You can download the example codes and change them to fit the specific serial device
you’re using.

2.2 Modules
The MGate 5216 supports executing a MicroPython file to communicate with a serial
device. We provide a module that supports the following API to enable the MGate to send
or receive serial data from a specific serial port. You can use this API in the MicroPython
file to achieve this.

2.2.1 mx_sio
The module [mx_sio] can be used to read/write data from and to serial ports. Here are
the functions in this module:

mx_sio.read(port, buffer, length, timeout)

This function reads data from a specific serial port.

port: The serial port number to read. Usually passes the input parameter of main().

buffer: A byte array to hold the read data. The size should be large enough to store
[length] bytes of data.

length: The number of bytes to read.

timeout: Specifies the maximum time limit in milliseconds to read data before returning
the number of bytes read upon timeout.

This function will try to read [length] bytes of data from [port] until [timeout] ms and
place the data in [buffer]. Then it will return the number of bytes read.

mx_sio.write(port, data, length)

This function writes data to a specific serial port.

port: The serial port number to write. Usually passes the input parameter of main().

data: A byte array containing the data being written.

length: The number of bytes to write.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 4 of 16

mx_sio.flush()

This function clears the input/output buffer of the serial port. When you receive data
timeout or read/write fail, call flush to prevent receiving incomplete data.

mx_sio.endian_swap (type, buffer)

This function applies endian swap to the data buffer.

type: The endian swap type to be applied to the data buffer.

0: None

1: Byte

2: Word

3: Byte-and-word

Here is an example of each type:

The original data is 0x12345678.

The None endian swap will be 0x12345678.

The Byte endian swap will be 0x34127856.

The Word endian swap will be 0x56781234.

The Byte-and-word endian swap will be 0x78563412.

buffer: The data buffer to be applied for endian swap.

2.2.2 Denylist
We use MicroPython V1.20.0 to execute the MicroPython script. You can import other
supported modules for calculations or data processing. Due to security concerns, certain
libraries and functions are restricted from use. The denylist is as follows:

MicroPython standard libraries and micro-libraries:

• io

• os

• select

• socket

• ssl

• sys

• uasyncio

• zlib

• _thread

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 5 of 16

MicroPython-specific libraries: (all)

• bluetooth

• btree

• cryptolib

• framebuf

• machine

• micropython

• neopixel

• network

• uctypes

• WM8960

built-in functions:

• eval

• exec

• open

2.3 Main function
The MGate 5216 executes the [main] function to start the script. The format of the main()
is fixed. Any script to be imported should have the same primary function, and here is the
format:

def main(port, parameter, data, output):

port: input parameter that is automatically set to the [Port Number] on the Proprietary
Serial web setting page. Used in calling [mx_sio] functions.

parameter: input parameter that is automatically set to the [Parameters] on the
Proprietary Serial web setting page. This is useful when you have several commands with
the same packet format to send.

data: input parameter for when the script is used in the [Output] or [Input/Output]
direction. The mapped data from EtherCAT will be placed in this input parameter.

output: output parameter for when the script is used in the [Input] or [Input/Output]
direction. This is used to carry out the mapped data to EtherCAT.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 6 of 16

2.4 Example: A simple example of reading Modbus device
registers
For the rest of this chapter, we will show you step by step an example that sends a
request to a Modbus device and reads values of registers. Please reference the example
file func03.py

The example file contains comments. For a clearer understanding, we will explain line by
line.

1. import mx_sio

This is to import the pre-defined modules. [mx_sio] is the module we provide to do serial
read/write in the MicroPython script. Normally, every script should import [mx_sio] to use
the functions we provide for serial communication.

3. LOW_BYTES = b'\
…
51. def add_crc(package: bytes) -> bytes:
52. return package + crc16(package)

The constants and two functions are used to calculate the Cyclic Redundancy Check (CRC)
that needs to be appended to request a package of Modbus serial. Error check bits can
vary across different serial devices, and their implementation can also be achieved in
multiple ways. This is just one way to implement CRC for Modbus serial.

54. def main(port, parameter, data, output):

The fixed entry point of the MGate 5216 executing the imported script. The function name
and parameters should be the same as in the example. The parameters are described as:

port: input parameter that is automatically set to the [Port Number] on the Proprietary
Serial web setting page. Used in calling [mx_sio] functions.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 7 of 16

parameter: input parameter that is automatically set to the [Parameters] on the
Proprietary Serial web setting page. This is useful when you have several commands with
the same packet format to send. In this example, the server id, function code, start
address and quantity are all set by the parameters.

data: input parameter for when the script is used in the [Output] or [Input/Output]
direction. The mapped data from EtherCAT will be put in this input parameter. In this
example, we send a read request, so no EtherCAT data is sent to the Modbus device. In
later examples, we will see how to use the data.

output: output parameter for when the script is used in the [Input] or [Input/Output]
direction. This is used to carry out the mapped data to EtherCAT. This example places the
response data from the Modbus serial device into the output parameter, which is then
sent to the EtherCAT side.

56. # function 03 request len: 6 + 2 (fix)
57. request_len = 6
58. request = bytearray(request_len)
59. request[0] = 0x01 # slave id
60. request[1] = 0x03 # function code
61. request[2:4] = bytearray([0x00, 0x00]) # start address
62. request[4:6] = bytearray([0x00, 0x0A]) # quantity
63. request_crc = add_crc(request) # crc (2 bytes)

In this paragraph, we’re preparing the request package of Modbus serial. The package
format is defined in the Modbus protocol specification. We’re preparing to send a [read
multiple registers (function 03)] request, so according to the specification, it will be a 6-
byte (CRC not included) package. Line #57~#58 declares a byte array of 6 bytes. The
server id is set to 0x01(Line #59), matching the connected Modbus device. The function
code is set to 0x03 (read multiple registers, Line #60). The next two bytes are starting
addresses we set to 0x0000 to read the registers at address 0 (Line #61), followed by
two bytes of quantity, which are set to 0x0A to read 10 registers (Line #62).

Line #63 is calling a predefined CRC function to make the full package, including CRC
value.

65. mx_sio.write(port, request_crc, len(request_crc))

Now we can send the full package to a serial device by calling mx_sio.write. [port] is from
input parameter by main(). [request_crc] is the generated full package data we create at
Line #63, and finally the length of the data being sent. Check how many bytes were
successfully sent by using the return value. To keep the example simple, we did not check
here.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 8 of 16

67. # function 03 response len: 1(server id) + 1(function code) + 1(byte count) + 2*N
+ 2(crc)
68. quan = 10
69.
70. response = bytearray(3+2*quan+2)
71. ret = mx_sio.read(port, response, len(response), 500)

Once the request is sent, the next step is to try to receive the response. The Modbus
specification mandates a response format comprising a 1-byte server ID , a 1-byte
function code, 1-byte count, data (2*N bytes with N being 10 in our example), and 2
bytes of CRC. A bytearray of sufficient size needs to be prepared to store the serial data
read from the serial port (Line #70).

Now, call mx_sio.read() to receive the serial bytes. [port] is from the input parameter by
main(), [response] is the buffer we created at Line #70, followed by the length to read,
and finally the timeout in milliseconds. Here, we specify 500 ms so that the mx_sio.read
either receives enough bytes of data and returns before 500 ms elapses, or waits 500 ms
and returns the actual number being read. The return value may be used to check how
many bytes were successfully read. To keep the example simple, we did not check here.

73. output_data = response[3:3+quan*2]
74. output.append(output_data)

The whole response package includes server id, function code, count, register data and
CRC. Again, CRC or function code should be used to check if the response is normal and
successful. For this example, we assume everything is working correctly in this example
and immediately apply the data. So, the register data part is put in the [output_data]. To
carry the data out to the MGate I/O memory and further to EtherCAT protocol side, the
output parameter of main() should be used. Call output.append() to transfer the data to
the function output. The MGate will handle the remaining data exchanges.

76. if ret >= 0:
77. return 0
78. else:
79. return -1

In short, the return value of main() signals whether the script executed successfully or
encountered problems. If everything is done successfully, a return value of 0 should be
returned. If the web console’s Proprietary Serial event logging is enabled and a non-zero
value is returned, an event will be recorded. Because the return value is logged in the
event, you can use different return values to identify specific error scenarios. This can
help you figure out what went wrong.

2.5 Example: A simple example of writing Modbus device
registers with parameters
This chapter provides an example of writing Modbus device registers. Please reference the
example file func16.py

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 9 of 16

The logic in this example is like the previous example. We’ll introduce the major
difference in this file, which includes the use of parameters and data from other protocols.

59. request[0:1] = parameter[0] # server id
60. request[1:2] = parameter[1] # function code
61. request[2:4] = parameter[2] # start address
62. request[4:6] = parameter[3] # quantity
63. request[6:7] = parameter[4] # byte count

In this example, parameters set the request fields. During execution, the configuration
setting will set the parameter on the Proprietary Serial protocol setting page, for
example:

If we enter the parameters on the Proprietary Serial protocol setting page, then the
execution will set the server id as 0x01, function code as 0x16, …., etc. This lets you use
one MicroPython script file with different settings and parameters, avoiding the need for
multiple files. Here, we add another data setting using the same MicroPython file.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 10 of 16

Now, we have 2 Modbus commands running: writing to 0x0000 with 10 registers, and
writing to 0x0123 with 20 registers. (The parameter[4] cut off in the screenshot is
0x0014 and 0x0028)

64. request[7:] = data # data

You can easily include the data to be sent in the request using the input parameter
“data”. The output bytes for expected values are set on the Proprietary Serial protocol
settings page, while data mapping is configured on the I/O data mapping page. If all the
settings are done, get the data from the EtherCAT side and then put it into the request to
write to the serial device.

65. retry_max = 5
66. retry_count = 0
67.
68. while retry_count < retry_max:
69.
70. mx_sio.write(port, request_crc, len(request_crc))
71.
72. # function 16 response len: 8 bytes (fix)
73. response = bytearray(8)
74. ret = mx_sio.read(port, response, len(response), 500)
75.
76. # if response success then break
77. if ret == 8 and response[1] == request[1]:
78. break;
79.
80. #else flush sio queue and retry (flush_func: 0=rx, 1=tx, 2=all)
81. mx_sio.flush(port, 2)
82. retry_count += 1

In the last example, we kept things simple by performing just one sio.write and then one
sio.read. This example includes a retry mechanism. When the response is read, you can
verify successful request handling by assessing the response’s length and the command it
carries. In case of insufficient byte reading or an exception, we can call mx_sio.flush.If
there’s not enough bytes read or an exception happens, we can call mx_sio.flush to clear
the buffer of read/write and retry the same request. Exceeding the retry_count limit will
trigger an error return.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 11 of 16

2.6 Example: A simple example of reading/writing Modbus
device registers with parameters
If you want to write data to a serial device and read data from a device with a single
MicroPython file, here’s an example of a read/write request to a Modbus device. Please
reference the example file func23.py

57. request_len = 12 + len(data)
58. request = bytearray(request_len)
59. request[0:1] = parameter[0] # server id
60. request[1:2] = parameter[1] # function code
61. request[2:4] = parameter[2] # read start address
62. request[4:6] = parameter[3] # read quantity
63. request[6:8] = parameter[4] # write start address
64. request[8:10] = parameter[5] # write quantity (n)
65. request[10:11] = parameter[6] # write byte count (n*2)
66. request[12:] = data # data
67. request_crc = add_crc(request) # crc (2 bytes)

Like the last example, we use parameters to complete the request body. Since this is a
read/write request, the request body has more fields to fill.

This example will look like the two examples combined. The data is from input and the
response data will be appended to the output.

2.7 Example: Another example of reading a proprietary
serial device
Here we have an example of reading data through a proprietary serial protocol from a
serial device. The format may vary from Modbus, but the core concept and execution
steps are similar. Refer to the example file read_pi_value.py

The request and response data for communication with the serial device is as follows:

Besides the format differing from Modbus, the behavior also has a slight variation. Once
the serial device receives a request, it sends an acknowledgement (ACK) and then
transmits the response packet. This example will demonstrate how to handle
communication.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 12 of 16

37. request = bytearray(12)
38. request[0:1] = b'\xAA' # Start byte
39. request[1:2] = b'\x02' # Address byte, always 0x02 with RS-232
40. request[2:3] = b'\x06' # Number of bytes in the following data unit.
41. request[3:4] = b'\x00' # [GS] Generator status, always 0x00 if it is
sent by the master.
42. request[4:5] = b'\x01' # [CMD] Read parameter
43. request[5:7] = parameter[0] # [IDX] Index | Parameter: set value Pi
44. request[7:8] = parameter[1] # [SUBIDX] Subindex
45. request[8:9] = b'\xFF' # [STAT] Status value
46. crc = crc16(request, 14)
47. request[9:11] = crc.to_bytes(2, 'little') # Checksum
48. request[11:12] = b'\x55' # Stop byte

The first step is to fill the request using the serial device specification format. We use
parameters for [IDX] and [SUBIDX] so that this MicroPython file can be used to add
multiple commands to read different addresses.

53. while retry_count < retry_max:
54.
55. # Master to generator (request)
56. mx_sio.write(port, request, len(request))
57.
58. # Generator to master (ACK)
59. ack = bytearray(1)
60. ret = mx_sio.read(port, ack, len(ack), 1000)
61.
62. # Generator to master (resopnse)
63. response = bytearray(17)
64. ret = mx_sio.read(port, response, len(response), 1000)
65.
66. # Did not check response data for now, receive enough bytes will be a as
successs
67. if ret == 17:
68. break;
69.
70. # not success, flush sio queue and retry (flush_func: 0=rx, 1=tx, 2=all)
71. mx_sio.flush(port, 2)
72. retry_count += 1
73.
74. # append the response data to output_data, which will later be write to I/O share
memory
75. output_data = response[10:14]
76. output.append(output_data)

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 13 of 16

Communication begins with a while loop. The loop operates by first transmitting the
request to the device, then receiving a single byte to acknowledge the request, and finally
reading the response data and validating its length. Otherwise, end the loop and add the
data to the output.

This example illustrates how multiple read or write operations can be combined in one
command to meet the needs of the protocol. Ensure the data is added to the output
before you go back.

3 Verification
When you finish the MicroPython file, you may import and set it on the MGate 5216’s
Proprietary Serial Setting web page.

The complete guide and details can be found in MGate 5216’s user manual. Once you
finish setting the commands, browse a few pages to see if your MicroPython script works
as intended.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 14 of 16

The following three pages are under System Monitoring-> Protocol Status of the
MGate 5216’s web console. First, go to the Proprietary Serial Traffic page.

This method is the most reliable way to verify if your program’s communication. The raw
data will show in Hexadecimal (HEX) so you can check if the behavior is as expected and
if the data bytes are correct. If a byte is incorrect, either review the MicroPython file or
adjust the parameter settings.

In the absence of traffic data, check the Proprietary Serial Diagnostics to verify
program execution. Invalid execution or timeouts suggest a potential logic error within
the MicroPython file.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 15 of 16

Finally, for convenience, we provide the Online Program Debugger page to quickly edit
file content and test.

The MGate normally operates in normal mode, but you can stop normal mode and switch
to debug mode. In debug mode, the output of the program will be shown in the text box.
You can add prints in MicroPython file to check the status of the running program. In
addition, any errors that the executor can identify will be displayed in the text box.

At the bottom of this page, you will find the Online Program Debugger.

Moxa Tech Note How to program MicroPython file for proprietary serial device

Copyright © 2024 Moxa Inc. Page 16 of 16

Edit, run, and view the output of the program here. When running the program debugger,
you must provide the port, parameters, and data (if used in the program), unlike in
debug mode. Once you’ve edited the MicroPython file, you can fill in the port, parameter,
and data to your specific testing requirements. You’ll see the output in the text box.
Remember to save if you want to keep the changes you’ve made to the file. The saved file
will overwrite the file you select.

	1 Introduction
	2 Writing MicroPython Scripts
	2.1 Programming tool
	2.2 Modules
	2.2.1 mx_sio
	2.2.2 Denylist

	2.3 Main function
	2.4 Example: A simple example of reading Modbus device registers
	2.5 Example: A simple example of writing Modbus device registers with parameters
	2.6 Example: A simple example of reading/writing Modbus device registers with parameters
	2.7 Example: Another example of reading a proprietary serial device

	3 Verification

